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A time-dependent current distribution is abruptly switched on, initiating an 
unsteady disturbance of a two-phase magnetohydrodynamic configuration. This 
comprises a magnetically permeated, conducting fluid flow contained by a 
vacuum magnetic field, from within which the source current radiates. An exact 
solution to the proposed part-time problem is constructed for the magnetic line 
distortion of the vacuum field. 

If the source current is oscillatory, two progressive, non-dissipative waves are 
normally encountered, these being superposed upon an infinite discrete set of 
terms obeying separate rules of decay. Propagation occurs longitudinally, 
parallel to the flow, but with amplitudes dependent on the transverse variable. 
The waves advance behind two fronts, the faster of which always travels down- 
stream. Depending on whether the flow speed exceeds or is exceeded by (or 
equals) J2 x the quadratic mean of both Alfvkn speeds involved, the slower front 
proceeds, respectively, downstream or upstream (or disappears, in which case, 
only one wave exists). Along a characteristic (a front path), appropriate contri- 
butions depend solely on the transverse co-ordinate, behaving otherwise like 
Riemann invariants. Contrary to expectation, the net perturbation is continuous 
across each characteristic. Various steady modes are ultimately attained after 
an infinite period. The radiation principle is satisfied. 

Both travelling waves are vibrationally sustained, vanishing with the source 
frequency. In  such an event, the infinite series result is summable to a closed 
form. From this, the general solution, corresponding to an arbitrary space-time 
source distribution, is deduced. Certain characteristic-associated equivalence 
laws are then established. An asymptotic approximation is made. 

1. Introduction 
Steady-state, stationary waves are known to exist along the interface of a mag- 

netically contained magnetohydrodynamic flow. This was first demonstrated by 
Savage (1967,1970), who studied the steady motion induced by time-independent 
sources with specific spatial distributions. The specific spatial distribution of 
Savage (1967) was a magnetic dipole suspended within the conhing magnetic 
field. That of Savage (1970) was an algebraically decaying pressure exerted along 
the interface. Superposed upon the stationary waves are additional terms found 
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to be decaying parallel to the flow, but otherwise formally represented by Laplace 
integrals. Hence, only the far-field asymptotic form of Savage's results is truly 
explicit. 

The present paper is concerned with the unsteady motion produced in a rather 
related two-phase magnetohydrodynamic configuration. This motion com- 
mences from an initial instant at  which a time-dependent current distribution 
is suddenly activated. The equilibrium arrangement considered by Savage is 
partially bounded in the sense that the flow layer is of finite thickness while its 
confining magnetic field extends transversely to infinity. The present paper 
focuses on the fully bounded problem with the confining field terminating a t  a 
conducting surface. 

Special attention is paid to the case where the source current is strictly 
oscillatory. Three possible distinct patterns of transmission arise. These corre- 
spond to the flow speed U > l' ( = J 2  x quadratic mean of both Alfvbn speeds 
involved), U < V ,  U = 8. The propagation is virtually one-dimensional, being 
aligned with the flow and magnetic fields. Amplitudes, however, vary with 
the transverse distance measured from the interface. In  particular, certain 
' quasi-Riemann invariants ' depend solely on this transverse co-ordinate 
along their assigned conveying characteristics (cf. Courant t Hilbert 1962). 
There are no actual Riemann invariants. Furthermore, the solution is con- 
tinuous across each characteristic. Evidently, there lacks a close identification 
with the behaviour of one-dimensional Cauchy waves. Nevertheless, non- 
dissipative wave functions do emerge. One such wave invariably travels 
downstream behind a fast front which advances with the group velocity 
U +  V along the appropriate characteristic path. Provided U 8 V ,  another 
conserved wave appears, moving downstream/upstream according as U V ,  
behind a slow front. The latter progresses with the group velocity U - V along 
its characteristic path. 

There is always a permanently steady component which pulsates at  the source 
frequency. Its complement generally remains unsteady at finite time, but ulti- 
mately develops steady forms after an infinite period along a constant velocity 
path. These forms vary with the path, being either independent of time and the 
longitudinal co-ordinate, or purely vibratory. In  the far-field zones, they 
eventually cancel out. 

If relativistic effects are accounted for, the radiation principle can be explained 
within the context of the present analysis. A group velocity interpretation of 
Lighthill (1960,1965,1967) is also verified. Lighthill applied the radiation condi- 
tion to solve steady-state wave problems uniquely. Instead, we adopt his (1 960, 
appendix B) method, which effectively substitutes zero initial values, corre- 
sponding to a part-time hypothesis, for the radiation condition. The consistency 
of our unsteady results with the radiation principle is then a natural outcome of 
this hypothesis. 

The existence of characteristics, in association with time-dependent, flow- 
aligned propagation is somewhat reminiscent of the one-dimensional wave equa- 
tion in particular (though appreciable differences do arise, as indicated earlier), 
and hyperbolic differential equations in general. But the fluid motion and that of 



Perturbation of a magnetically contain.ed H€ID Jlow 275 

its confining field are both elliptic, being, respectively, Laplacian and Poissonian 
in two space variables. This ellipticity plays a relatively subdued role, but 
significantly influences amplitudes. The dominant ' pseudo-hyperbolicity ' and 
time dependence are apparently acquired through an interface boundary condi- 
tionthatis, essentially, anintegro-differentialequation. During a previoussteady- 
state investigation of a magnetically pinched cylindrical jet of ionized gas (1972), 
the author also noticed the occurrence of spatial, ' pseudo-hyperbolic ' modes 
within elliptic fields. The cause was traced to boundary interaction. 

In  the equilibrium configuration, the fluid layer has the same depth as that of 
the confining magnetic field. This special geometry produces non-dispersiveness, 
and facilitates the derivation of an exact solution. This is particularly important 
in the present system, because the latter propagates distinct, characteristic- 
bounded, variable zones; the phenomenon encountered within a zone in the 
vicinity of the source being quite different from one far away. In  particular, 
steady-state modes differ in the various zones. Furthermore, this variety leads 
to interesting interpretations and subsequent comparisons of the radiation 
principle. Most of these factors would have been lost with an asymptotic solution 
(which is, incidentally, deduced as a corollary in 8 9). If the relevant depths are 
unequal, dispersion prevails. This would introduce new difficulties, and place 
a major obstacle in the way of an exact evaluation, An asymptotic approximation 
may be possible, but it would restrict attention to essentially the region about 
the fastest front. However, it is anticipated that the actual phenomena will 
be considerably different from those described by the present theory. Such 
differences will be investigated in a subsequent paper. 

2. Equations of motion 
We consider a completely uniform state, wherein a streaming layer - 1 6 y < 0 

(1x1 < 03) of incompressible, inviscid, perfectly conducting fluid is permeated by 
a magnetic field H, = (Elo, 0) and fringes, along y = 0, upon another magnetic 
field B, = (B,,, 0) ,  parallel to H, and traversing a vacuous space: 0 < y < 1 
(1x1 < 00). Throughout, reference is made to a two-dimensional r = (x, y) frame 
and the time t co-ordinate. Both parallel fields are aligned with the flow velocity 
U = ( U ,  0 )  of the fluid, whose pressure and density are, respectively, po, po, and 
whose magnetic permeability is p. The entire configuration is enclosed within 
two planar boundaries parallel to the interface y = 0, viz. a rigid base throughout 
y = - 1 for the fluid, and a perfectly conducting wall surface along y = 1 covering 
the vacuum field. For all purposes, we assume U 2 0. 

Suppose small perturbations areinduced into the equilibrium system described 
by a source of weak current I ( r ,  t ) ,  propagated perpendicular to the x, y plane 
along an infinite length conductor stationed in the vacuum field. We assume that 
I(r, t )  is either spatially distributed over a finite subdomain of 0 < y < 1 (1x1 < 00) 

or that it tends continuously to zero as 1x1 +03 in 0 < y < 1. Variations induced, 
upon the uniform state, by this current source are correspondingly weak and 
therefore satisfy linearized equations. A non-relativistic treatment is proposed. 
Letp, u = (uz, uJ, H = (Elz, H,) be the respective variations of the fluid pressure, 
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velocity and immersed magnetic field. Within - 1 < y < 0, the governing equa- 
tions are then 

divu = 0, divH = 0, 

DH/Dt = H,au/ax, (2.2) 

(2.3) pa DulDt + grad ( p  +pHoHx/4n) = ( p H o / 4 ~ )  aH/ax, 

where DIDt = slat + Ua/ax. Now, if 7 is the (transverse) elevation of a magnetic 
line of force of the total field H, + H so that 

H, aq/ax = H,, (2.4) 

then "D7 ax Dt- ?) = 0. 

The rigid boundary condition on the fluid is 

u, = 0 along y = - 1. (2.6) 

All fluid disturbances originate from its incidence, at the interface y = 0, of the 
radiation field within 0 < y < 1. This radiation is governed by 

with By = 0 along y = 1, (2.8) 

wherein B = (Bz, B,) is the magnetic field deviation from B,. If 5 is the elevation 
of a magnetic line of force of the total field B, + B, then 

B, agax = B,. (2.9) 

All displacement current terms normally associated with electromagnetic theory 
are virtually zero under a non-relativistic hypothesis. In  particular, then, (2.7) 
contains no time derivative. So the quantity B acquires its time dependence 
partly through its in-phase variation with the source current I ( r ,  t ) ,  and partly 
through a reflective effect caused by the fluid which, under exposure to radiation, 
executes an important unsteady motion inherent from the time derivatives 
present in (2.2) and (2.3). Part of the fluid motion is also in phase with the source 
current. The reflective effect is largely due to conditions at the interface. Its 
deformation (i.e. the flow profile) is, in view of (2.5), (T),=~. Consequently, the 
continuity of the normal component of magnetic field requires that 

= 7 along y = 0. (2.10) 

p +pH0 HX/4n = B, Bx/4n along y = 0, (2.11) 

pO+,uHg/8n = Bl/8n, i.e. ag-a2 = 2po/po, (2.12) 

The condition of pressure balance is reducible to 

because in the undisturbed equilibrium, 

where a = (pHi/4npO)* is the internal Alfvh speed within t,he fluid, and 
a. = (B:/4np0)h is an Alfv6n speed for the interface. 
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3. A space-time Fourier analysis 
J(r, t )  = - (47r/B0) I(r, t ) .  

To solve the space-time problem posed, we apply a double Fourier trans- 
formation: 

Let 

J*(w, a; y) = - J(r, t )  exp { - i(ax + cot)} dx dt, (3.1) 

the superscript * indicating the Fourier transform, in this case of J(r , t ) .  
Whereupon, (2.7) and (2.9) yield 

( w ,  a ;  Y), ( 3 . 2 )  a 2 p / a y 2  - a 2 p  = - J* 

whose general solution is 

[* = C(w, a )  exp{ay) + D(w, a )  exp { - ay} 

-a-l!'sinh[a(y- Y ) ] J * ( w , a ;  Y ) d Y ,  (3.3) 

in terms of arbitrary C(w, a )  and D(w, a). These are determinable from (via (2.8) 
and (2.9)) 

together with a second condition along y = 0. The latter must be established 
from the fluid and interface equations. 

<* = 0 along y =  1, (3 .4)  

From (2.1) and (2.3), we have 

(a2/ay2- a2) (p* + p H 0 H j / 4 n )  = 0, 

while (2.6), together with the y components of (2.2) and (2.3), implies 

a - (p* +pH0Hj/47r) = 0 along y = - I. 
a Y  

Also, via (2.7), (2.9) and (2.11), 

~ * + p H o H ~ / 4 ; . r + p o a ~ a ~ * / a y  = 0 along y = 0. 

Consequently, one obtains 

p* +puH0Hz/4n = -poa~(a~*/ay),=osechacosll  [a(y+ I)]. (3.5) 

Now, Fourier transforming (2.2)-(2.4) leads to 

a 
[ (w  + Ua)2 - a2a2] y* = p-l-  (p* +pH0Hj/47r) 

O a Y  
= - aa;(at*/ay),=, sech a sinh [a(y  + l)], (3 .6 )  

via (3.5). Whence, by virtue of (2.10), 

a%atanhaa[*/ay+[(w+ Ua)2-a2a2]E* = 0 along y = 0, (3.7) 
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the required lower condition on c*. The manipulation from (3.3), (3.4) and (3.7)) 
to the unique form off", is highly complicated. We merely display the final result,: 

sinh [a( 1 - y)] 1; 
$ * ( w , a ; g )  = sinh ( a Y )  J * ( w ,  a ;  Y) dY a sinh a 

sinh (ay) 1 
-k CI sinh a I!, sinh [a( 1 - Y ) ]  J*(w,  a; Y) dY 

24, a sinh [a( 1 - y)] 
f~inh(2a)[Y2a2-((o+Ua)2] / 'sinh[a(I-- Y)]J*(w,a;  Y )d I ' ,  (3.8) 

where Y = (a;4+a2)a (i.e. J2 x the quadratic mean of a. and a). 
In this paper, let us confine our interest to the part-time perturbation motion, 

which is effectively stagnant until an instant t = 0,  i.e. 6 = 0 throughout t < 0. 
This is provided for, if the Fourier inversion for (is defined by (cf. Lighthill 1960, 
appendix B; 1967) 

-m +iy 
<(r, t )  = jm cia 1 c*(w, a ;  y) exp {i<ax + at)] cia, (3.9) 

--m --W+i? 

where for ea,ch a in ( - co, 00) and for each y in [0,1], 

y < Im (lowest singularity of f*(q a; y) in the w plane). (3.10) 

Since (3.8) reveals that l * ( w ,  a; y) normally possesses (at least two) wsingula,rities, 
a t  w = ( V - U )  a and - (V  + U )  a ,  which are permanently real on - co < a < 03, 

(3.10) automatically implies y < 0 in the first place. Naturally, the inducing 
source current must remain inoperative until t = 0, when it is abruptly switched 
on. As an unstable in-phase contribution to the motion is undesirable, we propose 

IJ(r,t)l < co over 0 < t < co. (3.11) that 

It follows that J*(w ,  a; y) is analytic throughout the lower half-plane Im o < 0. 
Consequently, by the same reasoning associated with (3.9) and (3.10), plus the 
necessity that y < 0, the inversion rule 

(with the same y as in (3.9)) does satisfy the requirement that J(r, t )  = 0 during 
t < 0,  no matter where the remaining singularities of ( * ( w ,  a;  y) are located. For 
stability, however, none of these singularities must lie inside Imw < 0, in 
which case it is necessary and sufficient that y < 0. The part-time system pro- 
posed is comparable t o  a Cauchy-type radiation problem complying with zero 
initial conditions (Courant & Hilbert 1962). 

The inversion (cf. (3.9)) for ~ ( r ,  t )  in the fluid region - 1 < y f 0 can be accom- 
plished through (3.6) and (3.8). However, as there is no reason to expect any 
staggering departure from the analysis for c(r, t ) ,  we shall, as from now, merely 
concentrate on the latter. 
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4. Induction by an oscillating current 
Consider a source current which is oscillatory with time from the instant it is 

activated, i.e. 
J(r ,  t )  = J ( r )  exp{iht}H(t), 

h being a real constant frequency, and H(t)  being the Heaviside unit step func- 
tion. It then follows from (3.12) (via an w contour integration, say) that the 
Fourier transform 

roo 

J .I*(@, a;  y )  = 

J(r )  exp { - iax} dx 
-oo 

4n2i(w - A )  (4-2) 

Applying this to (3.8) and inverting [* by (3.9) leads to 

where the vector R = ( X ,  Y )  with 0 < Y < 1 ;  

K(r,tlR) = K(x ,y , t lX ,  Y ) :  for Y < y, 
1 O0 sinh [a( 1 - y ) ]  sinh (a  Y )  

a sinh a K(r,tlR) = -. f 
4n%- -oo 

~ + i y  exp {iwt} 
do ;  (4.4) s - m + i y  w - h  

x exp {ia(x - X ) >  da 

l?(r,tlR) = K(x,  Y,tlX,y) for y < Y ,  (4.5) 

derivable from (4.4) by interchanging y and Y ;  and 

OD a sinh [a( 1 - y)] sinh [a( 1 - Y ) ]  
exp @a(x - X ) >  da 

2n22 s - m  sinh (2a) 
L(r, tJR) = a% 

exp {id] dw s”::iy (w - A )  [ Pa2 - (w + uay] * (4.6) 

We note, in passing, that if the oscillatory source current is conducted along a 
thin wire (forming a current filament) passing through the point R in the vacuum 
field, i.e. 

with 6 denoting the Dirac delta function, then 

J(r) = 6(r-R) E 6 ( x - X ) 6 ( y -  Y )  ( 0  < Y < l), (4.7) 

t(r , t)  = K(r,tlR)+L(r,tJR) in y 2 Y ,  (4.8) 

but ((r,t) = I?(r,tlR)+L(r,tlR) in y < Y .  (4-9) 
Evidently, K ,  I? and L are element kernels of a Green’s function associated with 
the pulsating source. 

Consider both (inner) w integrals encountered in (4.4) and (4.6), the former 
being independent of the outer integration variable a, while the latter is a func- 
tion of a. Each integrand factor accompanying exp {id} is a meromorphic (pre- 
cisely, a rational) function of w which clearly satisfies a uniform convergence 
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condition of Jordan’s lemma in the complex w plane. Concerning the w integrand 
appearing in (4.6), its only singularities are three real, simple poles at w = A, 
( V - U ) a ,  - (V + U ) a ,  all of which lie above the prescribed integral path 
(-co +iy, 00 +iy) since y < 0. According as t > 0 (or < 0), this path may be 
completed by an infinite semicircle drawn into the upper half-plane Imw > y 
(or lower half-plane Imw < y),  to form a positively (or negatively) described 
closed contour which obviously encloses all three (or none) of the w poles. The 
relevant extended integration, performed along the appropriate choice of semi- 
circle, vanishes by virtue of Jordan’s lemma. Whence, in accordance with residue 
theory, the o integral of (4.6) possesses the value 

By similar arguments, the value of the w integral of (4.4) is 

2 r i H ( t )  exp{iht}. (4.11) 

The occurrence of the Heaviside factor H ( t )  confirms the desired part-time 
effect: = 0 throughout t < 0. Note that the strictly harmonic forms of (4.10) 
and (4.11) are consistent with a stable vibrating system. 

Substituting (4.10) into (4.6), and introducing the vectors 

rl = (xl,y) ( x - ( u +  V ) t , y ) ,  r2 = (xz,y) = (x-(U- V ) t , y ) ,  (4.12) 

we arrive a t  

L(r, t 1 R) = (a:/ V )  H ( t )  [exp {iht) F (  V ;  r I R) 

-P(V;r,lR)-exp{iht)P( - V;rJR)+B’(- V;r21R)], (4.13) 

where the function F (  V ;  r IR) E F (  V ;  x, y lX ,  Y )  is first expressed by the principal 
value representation of (A 1) and eventually evaluated as an infinite series (A 14). 
Likewise, K(r, tlR), initially represented by the integral of (A 19), is finally 
determined by either the infinite series (A20) or the closed form (A21). All 
analytical results and their interpretations are provided in 3 5 .  

5. Characteristic-bounded propagation 
If y and Y are interchanged in (4.4) (as well as (A 19)), we obtain an infinite 

integral convergent in y < Y (r + R) and representing the kernel $(r,tlR) 
defined by (4.5). Nevertheless, regarding the final form (A Z l ) ,  established under 
the assumption y 2 Y ,  the variables y and Y (as well as x and X) are inter- 
changeable. Thus we see that 

sinh2 [&r(x - X)] + sin2 [+n(y- Y)] I . sinh2 [in(. - X)] + sin2 [+n(y + Y ) ]  K(r, tlR) = H ( t )  (4n)-1exp{iht)ln 

(5.2) 
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Therefore, corresponding to the pulsatory source function (4.1), the 6 solution is 
representable, in the infinite strip E: (0 6 y < 1, -co < z < a}, by 

&,t) = /jE J ( R )  [K(r,tlR)+L(r,tlR)ldR, (5 .3)  

(cf. (4.3)),  dR being an area element. 

(A 14) to (4.13). First, let us define 
The complementary kernel L(r,tlR) is determined for U + V by applying 

(5.4) 
- W , H ( t ) H ( x - X ) H ( X - x , )  if U > V ,  ( 5 . 5 )  

WzH(t) H ( X  - x) H(x ,  - X )  if U < V ,  (5 .6 )  

Ll(r, tlR) = &H(t)  H ( x - X )  H ( X - z , ) ,  

Lz(r,tlR) = { 
where xl, xz are defined by (4.12), and 

iag sinh [gl( 1 - y)] sinh [al( 1 - Y ) ]  exp {ia,(x, - X ) )  
V (  U + V )  sinh ( 2a,) w, ZZ W1(xl-X,y, Y )  = 7 (5.7) 

iaisinh [az( 1 - y)] sinh [az( 1 - Y ) ]  exp {ia,(x, - X)], (5.8) 
V(  U - V )  sinh (201,) 

w, = Wz(x2 - x, y, Y )  = 

with a1 = - A/( U + V ) ,  a2 = - A/( U - V ) ,  Furthermore, we introduce 

exp { - +nn IT ,  - X 1) 
inn(U-  V )  2h ' 

fi+n = f&(xz - X )  = - (5.11) 

f& G f&(x - X ,  t )  = exp {iht} exp { - in7rlx - X I }  
1 

Thus, in terms of (5.4)-(5.12) and for U + V 

L(r, tlR) = Ll(r, t IR) + Lz(r, tlR) + 5? H(x ,  - X )  + 51 H ( X  - xl) 
+ E z f H ( X g  - X) + (g H ( X  - xZ) + &$ H ( x  - X) + 5: H ( X  - x). (5.13) 

The quantity W, (v = i, 2) expressed by (5.7), (5.8) represents anon-dissipative 
travelling wave of wavelength 27r/la,,l. Its passage is restricted to the x direction, 
but with a variable y-dependent amplitude. Starting from the interface y = 0, 
this amplitude decreases with increasing y, till it  vanishes along the conducting 
wall surface y = i. Both W, and W, are associated with a non-dispersive, one- 
dimensional wave system: relative to the positive x direction, 

phase velocity = group velocity = U + V ,  U - V ,  
respectively. The terms (:, 6; (v = 1, 2, 3) are each an infinite sum of sinusoidal 
functions of y. They are dissipative, but only in the sense that 

E$-+O, c ; + O  as ]xy-XJ+m (v = 1,2) ,  

&+O,  $g+O as Ix-Xl+oo. (5.14) 
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Like V$, [$ and [; (v = 1 ,2 )  are longitudinally propagative, but unlike W,, they 
decay as t-tco, except near one of two distinct straight lines in the 5,  t ( t  > 0)  
plane, viz. the y1 Characteristic 

or the y 2  characteristic 

On the other hand, [ 3 f  and & are fully stationary and steadily oscillatory in phase, 
with the source current a t  frequency A. Along the y1 characteristic, the quantities 
W,, [t, [F are propagated independently of x and t ,  from an origin at  (x, t )  = ( X ,  0 )  
and with the fast group velocity U +  V .  Likewise, along the yz characteristic, 
W,, l,’, [g are also propagatedindependently of z and t from the same origin, but 
with the slow group velocity U - V .  There is, clearly, an analogy with the con- 
veying of Riemann invariants along the characteristics of hyperbolic differential 
equations (Courant & Hilbert 1962). In  the present situation, however, our 
‘quasi-Riemann invariants’ are all y dependent. The origin (x, t )  = ( X ,  0 )  corre- 
sponds to the physical source plane containing the current filament through R a t  
its instant ( t  = 0) of activation (cf. (4.1), (4.7)). Thus, based on an z, t diagram, 
all perturbations virtually commence at this instantaneous source plane. The 
kernel L ( r , t l R )  can be represented throughout time t > 0 (avoiding the initial 
instant t = 0 )  on the x, t diagram. 

First, suppose U > V .  Both y1 and y, characteristics are downstream (i.e. 
x > X )  inclined. There are four distinct regions of separation wherein (via (5.4), 

( 5 4 ,  (5.13)) [0]+(&+5;+[g) in x > x (upstream), (5.15) 

(near downstream), (5.16) 

(mid downstream), (5.17) 

(far downstream). (5 I 18) 

The x, t pattern is depicted in figure 1.  The [ ] quantities of (5.16) and (5.17) 
denote permanently undamped, progressive waves. The propagation of W, is 
spaced over a downstream expanding interval x > X > x,, behind a fast front 
X = xl advancing with the group velocity U + V (i.e. along the y1 characteristic). 
Behind ;I slow front X = x2, which progresses downstream (along the y, charac- 
teristic) with the group velocity U- V ( > 0 ) ,  - W, is superposed upon W, within 
the expanding near-downstream subinterval x > X > xz (cf. (5.16)). Neither Wl 
nor W, ever gets transported upstream, as implied by [ ] 5 [ O ]  in X > x (cf. (5.15)). 
Likewise, they have not yet penetrated into the far-downstream region x1 > X 
beyond the fast front. Superposed upon the entire field of propagation are the 
( ) quantities, each composed of terms which obey the dissipation laws of (5.14). 
Thus, for example, when t > 0 

near x1 = X + O,, (5.19) 

near x1 = X + Ow, (5.20) 

x = x1 (= x- ( U +  V ) t ) ,  

x = xz (= x - ( U -  V ) t ) .  

[K-W,]+(5$+$r+&) in x > X > x2 

L ( r , t l R )  = [WJ+([$+[S++Ei) in x2 > X > x1 

[O] + (5: + [$ + [g) in zl > X 1 
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FIGURE 1. The x, t pattern for the propagation of L(r, tlR) during t > 0 in the case U > V .  
The longitudinally transported waves Ti\ and W, are confined respectively to a downstream 
zone x > X > x1 behind the y1 characteristic x1 = X ,  and t o  a near-downstream zono 
x > X > x2 behind the y2 characteristic x2 = X .  The values associated with the wriggly 
arrows correspond to the appropriate asymptotic behaviour for large 12 -XI ,  and for 
large t close about, as well as diverging from, the t axis, the y1 and yz characteristics. 

near x2 = X + O,, (5.21) 

(5.22) 
L(r, t lR)  - 

‘--W2+5; near x2 = X+O-, 

(5.23) 

(5.24) 

This behaviour is indicated in figure 1 by the far pairs of nearly parallel arrows 
(wriggly, for example, to represent travelling observations that are alternatively 
retarding and accelerating), described about the y,, yz characteristics and the 
t axis. They record the possible asymptotic developments measured, at large t ,  
by three pairs of L observers, moving independently since the instant t = 0, with 
small variations of velocities about U +  V ,  U -  V ,  0 respectively. Suppose the 
observer who is experiencing the effect (5.20), slightly behind the fast front 
x1 = X ,  reduces his mean velocity from approximately U + V to about U - V, 
the process being represented by an arrow wriggling, nearly parallel to the y2 
characteristic, from the reading W, + 6 ,  towards the reading W,. Correspondingly, 
suppose the observer who is exposed to the effect (5.21), slightly ahead of the 
slow front x2 = X ,  accelerates to a mean velocity about U + V. Evidently these 
observers, both inside the mid-downstream zone, eventually meet, at  which 
point, they register the same effect, roughly W, . A similar significance can be 
attached to the two large t readings K-K+E$ and K--K+& deviating 
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s 
s 

FIGURE 2. The x, t pattern for U < V.  The y1 characteristic remains inclined downstream, 
while the yz characteristic becomes upstream inclined. The waves W, and W, are observed 
within, respectively, the near-downstream zone x > X > xl and the near-upstream zone 
2 2  > A- > 2. 

towards W, - W2 from x N X + 0, and x2 
zone. Also, as denoted by the nearly horizontal wriggly arrows, 

X + 0- within the near-downstream 

L(r,tlR)-+O uniformly as Ix -X]  +a (5.25) 

throughout either the upstream zone x < X or the far-downstream zone x1 > X, 
corresponding to the extreme far-field developments. 

Next, suppose U < V .  Then the y1 characteristic inclines downstream, while 
the y2 characteristic inclines upstream. From (5.4), (5.6) and (5.13), we obtain 

[01+([;++5;-+6;) in X > x2 (far upstream), (5.26) 

[Wz]+(6$+$;+&-) in x2 > x > x (near upstream), (5.27) 

[W,] + (52 +[$ + &) in x > X > x1 (near downstream), (5.28) 

[ O ]  + ([;t + [$ + [$) in x1 > X (far downstream). (5.29) 

Interpretations similar to those for U > T' can be provided. Corresponding 
effects, relative to the x, t plane are explicitly illustrated in figure 2. In  particular, 
1% (K) is a strictly downstream (upstream) progressive wave, confined to a right- 
(left)-expanding interval behind the advancing fast front x1 = X (slow front 
x2 = X). The previous forms of (5.15) and (5.18) are, at present, preserved, 
respectively, far upstream and far downstream (cf. (5.26), (5.29)). In  both these 
zones, the rule (5.25) applies. Furthermore, the mid-downstream solution of 
(5.17) now emerges near-downstream (cf. (5.28)). 

When U = V ,  several of the results after (5.3) fail. In  this case, we need to 
employ (A 18) in dealing with the functions P( - V ;  rlR) and F( - V ;  rJR) of 
(4.13). Thus, if 

w = (K)U=F, C? = (ti%=v, ci- = (+T)U=Y, (8.30) 

L(r,tlR) = 
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W 
4 

FIGURE 3. The case U = V .  There is only one Characteristic, viz. the y1 characteristic, 
behind which the sole x-directed wave W progresses downstream within x > X > xl. 

i.e. the respective values, taken at  U = V ,  of the functions defined by (5.77, (5.9) 
and (5.10), 

iH( t )  at exp (iht) 
( - l)n+l sin [&am( 1 - y ) ]  sin [inn( 1 - Y ) ]  

217 n=l 
e2 = 

exp{-&nnIx-XI} 
inmV -+_ h 

X - ;  (5.31) 

iH( t )  at ( 1  - exp {iht}) sinh [+n-(x - X ) ]  cos (+n-y) cos (in Y )  
; (5.32) " = 16AV (sinh2 [&(x - X ) ]  + sin2 [&r(y + Y ) ] }  

then whenever U = V 
x {sinh2 [$m(x - X)] + cos2 [$n(y - Y ) ] )  

[o l+ (C~+$~+Cg)  in X > x (upstream), (5.33) 
L(r,tlR) = [ W ] + ( c $ + + 2 + 5 i )  in z > X > x1 (near downstream), (5.34) 

(far downstream). (5.35) 

The only longitudinally travelling wave present is W .  It has the wavenumber 
a1 = - h/2U, and occurs within the near-downstream zone behind the only front 
X = x1 ( = x - 2Ut) which is advancing along the downstream-inclined y1 charac- 
teristic. The functions &, c$ follow the same laws of decay, viz. (5.14), as c?, &; 
c$ is steadily oscillatory with source frequency A. The function c2, which contri- 
butes throughout 1x1 < 00, has a steadily oscillatory part superposed upon a time- 
independent part. If R is any interior point of the infinite strip S, c2 is an analytic 
function of x and y over E. In  particular, 

i [OI 4- (Q + c 2  + 52) in x1 > x 

C 2 + O  as I x - X [ + Q  oras Ix-XI-tco. (5.36) 

Figure 3 provides the relevant x, t scheme. 
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of the 6 values along the symmetric characteristics yl(X,, T )  and yz (Xo ,  T) at the 
earlier instant t = $7 + T. 
In view of (8.3), (8.5) and (8.6) reduce, when X ,  = X ,  to 

(Q+)yl(X,T)  = Q P J ' ( t - T ) , y ;  YI = (Q+)y,(X,27 ( U  2 0).  (8.9) 

This result can be extended and generalized by the following theorem. 

THEOREM 2. (An equivalence law of simultaneous propagation.) Suppose the 
spatial distribution of the impulsive source (8.1) is symmetric about some vertical 
line x = X,, i.e. 

Then along y l (Xo,  T) and y2(Xo, T) diverging from the initial point on the given 
line, the 6 values a t  any instant are (simultaneously) equal for U > 0:  

J ( X ,  - x, Y )  = J ( X ,  + x, Y). (1) 

with G(x,y; Y )  defined by (7.8). Furthermore, if U = 0, then along the two 
symmetric y1 and yz  characteristics crossing each other on the same line of 
symmetry x = X o  at any other point, the 6 values are also equal at any instant. 
(Note that both (8.9) and (11) have obvious applications to  (8.8) when X, = X 
and theorem 1 holds respectively.) 

Proof. Owing to the second identity of (8.3),  (I) implies 

J(R) G(Xo - X, y ;  Y) dR = 0, (8.10) JJ, 
n n  

J (R)  G[Xo - X + 2V(t - T), y; Y ]  dR 

J(R)  G[X - Xo + 2 V ( t  - T ) ,  y; Y ]  dR (8.11) 

JJ, 
= ss, 

J (R)  G[Xo-X-  2V(t  - T ) ,  y; Y] dR. (8 .12)  

Application to (8.2), (8.5) and (8.6) leads directly to (11). If U = 0,  and ( X o ,  To) is 
any point (other than (X,, T)) on x = Xo,  then, from (7 .7)  and (8.4), 

(Q+)yl(x0, T ~ )  = G[XO - X + 2 V t -  V(To + T), Y ;  YI - Q[Xo - X - V (  To- T), y; Y ] ,  

(Q+)yz(xo, To) = G[Xo - X + J'(T0 - T), y; Y ]  - G[Xo - X - 2J't + v(po + T), y; Y ] .  

Following through with an argument like that based upon (8.11) and (8 .12) ,  we 

(8.13) 

completing the proof. (Note that the identity here does not involve the same 
integral convolution as (II).) 

Suppose the y1 and y2 characteristics through an arbitrary point ( x , t )  are 
yl(Xl, Tl), y2(X,,  T2). Let the yz characteristic through (Xl, T') be y2(X,, T3),  
( X 3 ,  T3) being the point such that yl(X,, T3) passes exactly through ( X z ,  T2). The 
two pairs of y1 and yz characteristics, thus constructed, form what we shall call a 

19-2 
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normally expected of a fully stable motion generated by a steady force or source. 
The steady modes encountered are either x, t independent or strictly vibratory. 
Similar illustrations can be drawn for the cases U 6 V.  Note particularly that, 
for all U 2 0, the steady state ultimately attained by the L kernel in either the 
extreme downstream or extreme upstream zone along a y path of the type (6.2) 
is one of ‘silence’: L(r,  colR) = 0.  

Within the far-downstream/upstream (far-upstreamif U < V )  zoneextending to 
2 = 2 03, the L solution always takes the form c: + ($ + E;3f ({p + C2 + {$ if U = V ) ,  
which + 0. Superposed upon this is K(r ,  tlR), also + 0.  In  the far field, these non- 
trivial L and K forms operate the instant the source current (6.1) is switched on 
a t  t = 0. The immediate impression conveyed is that the Sommerfeld radiation 
principle is violated. From this principle, i t  should instead follow that all per- 
turbations (which must originate at  the solitary current source) cannot at  finite t 
participate arbitrarily far away, but must be contained within a finite domain 
expanding about the source plane. The controversy arises because our original 
non-relativistic formulation of Q 2 assumes the inverse of the speed of light to be 
negligible. Consequently, electromagnetic (or optical) effects, travelling at  speeds 
comparable to that of light and contributing to the motion, are infinitely faster 
than both fast and slow fronts. The correct interpretation is that [t + c$ + & and 
K(r, tlR) represent such infinitely fast electromagnetic effects. This should then 
explain their immediate appearances, since t = 0, a t  far distances. A reliable test 
for the radiation principle is through ( 5 . 2 )  and ( 5 . 2 5 ) .  They indicate that, far 
downstream and upstream (far upstream if U < V ) ,  

K ( r ,  tlR) + L(r,  t 1 R) -+ 0 uniformly as Ix - XI -+a. 

This eliminates the possibility of any disturbance being admitted from both 
inhiteends. Moreover, as r + R ,  IK(r,tlR)J -+alike Jlnlr-R121, verifying that 
K(r ,  tlR) certainly originates at the filament source (6.1). (In fact, the logarithmic 
singularity, here, is reminiscent of the unbounded electrostatic field near a steady 
line current.) All these factors strongly suggest a consistency with the radiation 
principle. Lighthill (1960, 1965, 1967) applied the radiation principle, in place of 
initial conditions, to investigate steady wave problems during time t = to, and 
arrived at a group velocity interpretation. Consider the eventual steady etates 
of the filament source (6.1) attained by 5 far off the source plane as well as the 
fast and slow fronts, e.g. about the path (6.2). We have (i) a W, wave travelling 
downstream behind x1 = X with the positive group velocity U + V ;  (ii) a W, wave 
travelling downstream/upstream behind x2 = X if, and only if, its group velocity 
U - V $0. Note that when the group velocity U - V = 0, the W2 wave disappears. 
Both phenomena (i) and (ii) agree with Lighthill’s conclusion that the group 
velocity, of an anisotropic wave system, has a positive (outward) component 
along the position vector, i.e. wave energy is transmitted away from the source. 
Furthermore, (iii) well beyond the fast front x1 = X (as well as the slow front 
x, = X in the case U < V ) ,  a steady zone of ‘silence’ develops: < = 0. This also 
happens upstream when U 3 V .  Consequently, during a steady state, the radia- 
tion principle is satisfied in the sense of both Lighthill and Sommerfeld. 

As indicated earlier, there appears to be a close resemblance between the 
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propagation pattern and one that is governed by a hyperbolic differential eyua- 
tion in x, t co-ordinates. Now the main equations governing the fluid interior and 
the vacuum field are (cf. (2.1), (2.3), (2.7)) Laplace’s and Poisson’s, respectively, 
both of which are elliptic and time-independent. Our time variation evidently 
derives from the interface condition (3.7), whose Fourier inverse corresponds to 
an integro-differential equation. This equation imparts a ‘ pseudo-hyperbolicity ’ 
that is seen to prevail. 

7. The general solution 
In the general situation, the space-time distribution J ( z )  = J(r, t )  ( = 0 for 

t < 0 )  of the suddenly applied source current satisfies (3.11),  but otherwise 
remains arbitrary. Throughout, z = (r, t )  = (x, y, t )  denotes a three-dimensional 
(hyperspace) position vector defined on 0 < y < 1. Let Z = (R, T )  = ( X ,  Y ,  2’) 
with 0 < Y < 1 and T 2 0. The induced part-time [ perturbation is then expres- 
sible, via (3.1), (3.8) and (3.9), as 

where P(z lZ)  = P(x,  y,tlX, Y ,  T) and &(zlZ) possess the respective forms (4.4), 
(4.6), but with the common integrand factor exp {iwt}/i(w - A )  replaced by 
exp(iw(t-7‘)); i.e. P(z lZ)  is derived from K(r,tlR), and &(zlZ) from L(r,tjR), 
by (i) putting h = 0,  (ii) differentiating once with respect to t ,  and (iii) substituting 
t - T for t. 

Now, when h = 0, (5.2) yields K(r,tlR) = H(t)d-l(rlR): 

1; (7.2) 
sinh2 [ Q ~ ( x  - X ) ]  + sin2 [in@ + Y ) ]  
sinh2 [&r(x - X)] + sin2 [+n(y- Y ) ]  

M(rlR) = (4n)-lln 

while from (5.4)-(5.13), noting that = W, = 0 (i.e. both travelling waves W, 
and W, are vibrationally sustained by a non-zero source frequency A) ,  and 
appealing to (A 17), we arrive at  

provided U + V ,  with - 

(7.4) 
sinh2 [&(x - X ) ]  + sin2 [&(y + Y ) ]  
sinh2 [in(% - X ) ]  + cos2 [ t n ( y  - Y ) ]  ’ N(r(R)  = (4n)-lln 

and where rl and r2 are defined by (4.12). In  this case, K(r,  tlR) + L(r, tlR) deter- 
mines (via (7.2) and (7.4)) the [ solution for the abruptly activated and con- 
stantly maintained filament source: J(r, t) = S(r - R)H(t). 

Applying rules (ii) and (iii) above to (7.2), 

P(z l2)  = 8(t - T) M(rlR), (7.5) 
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which is symmetric in y and Y (and r, R as well). Likewise, from (7.3) and (7.4), 
and noting that the [ ] term in (7.3) vanishes a t  t = 0, we obtain 

&+(z~Z) = G[x-  X - ( U  - V )  ( t -  T ) ,  y; Y ]  - G [ x - X -  ( U +  V )  ( t -  T ) ,  y ; ' Y ] ,  
(7.7) 

where 
(ai/16V) sinh (tnz) cos (&y) cos (&Y) 

G(x,y; Y )  = {sinh2 (Bnx) + sin2 [tj.(y + Y ) ] }  (sinh2 ( a m )  + cos2 [&n(y - Y ) ] }  ( 7 4  

I n  using (7.3) to establish this result, we assumed U + V .  Nevertheless, by 
starting independently from (5.30)-(5.35), it can be shown by similar arguments 
that (7.6)-(7.8) also hold whenever U = V .  Whereupon, for every U 2 0, (7.1) 
reduces, via (7.5) and (7.6), to 

a4 = H ( t )  [ [j- J ( R ,  t )  J W R )  dR+ jjj9(t) J ( Z )  &+(ZlZ) dZ] 9 

ss, 

(7.9) 
a 

the general solution a t  time t within the infinite strip B : { - co < x < 00,o < y c i} ; 
the doubleintegral ranges over 9, of which dR denotes an area element, while the 
triple integral ranges over the infinite hyperbar 

L@(t):{O<T<t, -O0<x<oo,o< Y < I } ,  

of which dZ is a volumetric element. The perturbation term executes 

a spatially modified, in-phase time variation with the source current J(r, t ) .  It 
generalizes the kernel K(r, tlR). 

For a filament source current with an arbitrary time variation, viz. 

J(z )  = 6(r - R) J( t )  H ( t ) ,  (7.10) 

(7.11) 

If the filament source acts impulsively a t  t = T ( > 0) ,  i.e. 

J ( z )  = 8(z-2) 3 8(x-X)S(y- Y)6(t-T) ,  (7.12) 

&+(W (t  > T ) ,  (7.13) 
E(z) = 8( t -T)M(rIR)+H(t -T)&+(z lZ)  = 

0 ( t  < T). (7.14) 

This solutionis the basic Green's function for an arbitrary space-time distribution 
J(r, t )  (as opposed to the Green's function of (4.8) and (4.9), associated with the 
general oscillatory current source of (4.1)). The contribution 

6(t- T) M(rlR) = P(zlZ)  

(cf. (7.5)) is completely in phase with the source, operating momentarily a t  t = T 
with singular effect, and, like K(r, tlR), possesses a logarithmic singularity about 
the generating filament through r = R (see (7.2), also (5.2)). The contribution 
H ( t - T )  Q+(zlZ) = &(zlZ) (cf. (7.6)) operates only from the instant t = 2' of 

I9 P L M  63 
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‘switching on’, a consequence of our part-time postulate. Like L(r, tlR) at zero 
h frequency, Q+(zlZ) is analytic for all Z, Z within the infinite hypertower ~ ( o o )  
(cf. (7 .3) ,  (7.4), (7.7), (7.8)). 

8. Equivalence properties 
Suppose the source current is impulsive, but arbitrarily distributed in space: 

J ( z )  = J(r)6(t-T) (T > 0). (8.1) 

Whence, throughout t < T ,  E(z) = 0, by virtue of  (7.9). Let us assume as from 
now that, unless otherwise stated, t > T .  In  this case, 

m m  

amounting to a generalization of the Green’s function Q+(z(Z) ( fort  > T ) .  The 
latter is determined via (7.7), in terms o f  G(x,  y; Y )  expressed by (7.8); note that 

G(0, y; Y )  0, G(x,  y; Y )  = - G( - X, t ~ ;  Y ) .  (8.3) 

Let the x, t (half) plane be confined to the domain above the horizontal initial 
axis t = T .  Within this plane, the y1 and y z  (straight line) characteristics crossing 
any point (x, t )  = ( X o ,  To) are represented by (cf. $ 5 )  

(8.4) 

Along y l (Xo,  T) and y2(X,, T ) ,  which extend only upwards from the initial point 
( X o ,  T) into t > T ,  the Green’s functions are, respectively, 

I Yl(X0,  To) : x - xo = ( U + V )  ( t  - To), 
y2 (X0 ,To) :  x-x, = (U-V)(t-To). 

(Q+)yl(Xo, T) = [ Q + ( ~ l ~ ) 1 y 1 ( X 0 ,  T) 

(Q+)yz(Xo, T) = [Q+(~l~)l,z(x@, T) 

= GIXo - X  + 2V(t - T ) ,  y; Y ]  - G(Xo-  X ,  ?/; Y ) ,  

= G(X0- X ,  y; Y )  - GIXo- X -  2V(t - T ) ,  y; Y ] ,  

(8.5) 

(8.6) 

0. If U = 0,  y l ( X o ,  T )  and y 2 ( X o ,  T )  are symmetric valid for any flow speed U 
about the vertical line X = X,, along which 

(Q+)z=Xo = B [ X o - X +  V ( t - T ) , y ;  Y ] - G [ X , - X -  V ( t -T ) , y ;  Y ] ,  (8.7) 

which a t  any time t = r + T becomes 

(&+),=X,, t=r+T = [(Q+)y,(x,, T) + (Q+)y , (x ,  T)l t=++~,  (8.8) 

viz. the sum of (8.5) and (8.6) taken at  t = -;7+T. Applying this to (8.2), we 
arrive a t  the following. 

THEOREM 1. (A time-difference law of equivalent propagation.) Under exposure 
to the general impulsive source of  (8.1) in the presence of a stationary flow, 
U = 0, the [value for any given y within (0 , l )  at  anyinstant t = r + T (r > 0) and 
along a vertical line x = X o  starting from the initial point (Xo,  T )  equals the sum 
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of the 6 values along the symmetric characteristics yl(X,, T )  and yz (Xo ,  T) at the 
earlier instant t = $7 + T. 
In view of (8.3), (8.5) and (8.6) reduce, when X ,  = X ,  to 

(Q+)yl(X,T)  = Q P J ' ( t - T ) , y ;  YI = (Q+)y,(X,27 ( U  2 0).  (8.9) 

This result can be extended and generalized by the following theorem. 

THEOREM 2. (An equivalence law of simultaneous propagation.) Suppose the 
spatial distribution of the impulsive source (8.1) is symmetric about some vertical 
line x = X,, i.e. 

Then along y l (Xo,  T) and y2(Xo, T) diverging from the initial point on the given 
line, the 6 values a t  any instant are (simultaneously) equal for U > 0:  

J ( X ,  - x, Y )  = J ( X ,  + x, Y). (1) 

with G(x,y; Y )  defined by (7.8). Furthermore, if U = 0, then along the two 
symmetric y1 and yz  characteristics crossing each other on the same line of 
symmetry x = X o  at any other point, the 6 values are also equal at any instant. 
(Note that both (8.9) and (11) have obvious applications to  (8.8) when X, = X 
and theorem 1 holds respectively.) 

Proof. Owing to the second identity of (8.3),  (I) implies 

J(R) G(Xo - X, y ;  Y) dR = 0, (8.10) JJ, 
n n  

J (R)  G[Xo - X + 2V(t - T), y; Y ]  dR 

J(R)  G[X - Xo + 2 V ( t  - T ) ,  y; Y ]  dR (8.11) 

JJ, 
= ss, 

J (R)  G[Xo-X-  2V(t  - T ) ,  y; Y] dR. (8 .12)  

Application to (8.2), (8.5) and (8.6) leads directly to (11). If U = 0,  and ( X o ,  To) is 
any point (other than (X,, T)) on x = Xo,  then, from (7 .7)  and (8.4), 

(Q+)yl(x0, T ~ )  = G[XO - X + 2 V t -  V(To + T), Y ;  YI - Q[Xo - X - V (  To- T), y; Y ] ,  

(Q+)yz(xo, To) = G[Xo - X + J'(T0 - T), y; Y ]  - G[Xo - X - 2J't + v(po + T), y; Y ] .  

Following through with an argument like that based upon (8.11) and (8 .12) ,  we 

(8.13) 

completing the proof. (Note that the identity here does not involve the same 
integral convolution as (II).) 

Suppose the y1 and y2 characteristics through an arbitrary point ( x , t )  are 
yl(Xl, Tl), y2(X,,  T2). Let the yz characteristic through (Xl, T') be y2(X,, T3),  
( X 3 ,  T3) being the point such that yl(X,, T3) passes exactly through ( X z ,  T2). The 
two pairs of y1 and yz characteristics, thus constructed, form what we shall call a 
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parallelogram of characteristics with ordered vertices a t  (x, t ) ,  ( X l ,  TI), ( X 3 ,  T3),  

THEOREM 3. (Parallelogrammic equivalence.) The sum of the ( values (asso- 
ciated with the general impulsive source current) a t  two opposite vertices of any 
parallelogram of characteristics equals the sum of the ( values a t  the other two 
opposite vertices. The ( value a t  any vertex lying on the initial axis t = T is 
singular, being comparable with 8(t - T ) ,  but does not participate in the parallelo- 
grammic equivalence above t = T ,  viz. the [ value a t  the opposite vertex simply 
equals the sum of the ( values a t  both adjacent vertices. (Note that, since 
U ( 2 0) and V ( > 0) are finite velocities, the y1 and yz  characteristics are never 
horizontal. Hence a parallelogram of characteristics in t > T has, a t  most, only 
one vertex along the initial axis t = T.)  

Proof. We base our arguments on the typical parallelogram of characteristics 
described above. The points (x, t ) ,  ( X 3 ,  T3) constitute a pair of opposite vertices, 
while the complementary pair comprises just ( X , ,  T,) and ( X z ,  T2). Now yl(X,, T,) 
and y z ( X z ,  Tz) intersect a t  (x, t ) ;  it therefore follows from (7 .7 )  and (8.4) that 

(XZ, TZh 

&+(zlZ) = G [ X , - X - ( U -  V ) ( T z - T ) , y ;  Y ]  

- G [ X , - X - ( U +  V ) ( T l - T ) , y ;  Y ] .  

Since ( X l ,  Tl) lies on yz(X, ,  T,), while ( X z ,  T2) lies on y l (X3,  T3), 

G [ X , - X - ( U -  V ) ( T l - T ) , y ;  P ] - G [ X 3 - X - ( U -  V ) ( T , - T ) , y ;  Y ]  = 0, 

G [ X , - X - ( U +  V ) ( T , - T ) , y ;  Y ] - G [ X z - X - ( U +  V ) ( T z - T ) , y ;  Y ]  = 0. 

Adding all three results, and turning once again to (7.7), we arrive a t  

&+(zlz) +&+(Z,lZ) = &+(z,lz) +&+(ZzIZ), (8.14) 

where Z, = ( X u ,  y, T,) with v = I,  2, 3. Application to (8.2) yields 

((z) + “Z,) = ((21) + W Z ) .  (8.15) 

This proves the first part of the theorem, on the tacit assumption that 

t > T and T, > T (v = 1 , 2 , 3 ) .  

Now, the complete ( solution covering all values o f t  ( > 0) is not given by (8.2), 
but is instead, via (7.9) and (%I),  

J ( R ) N ( r I R ) d R + H ( t - T )  J ( R )  &+(r, t lR ,  T )  dR. 

(8.16) 

Consequently, whenever the vertex (x, t ) ,  say, lies along the initial axis t = T, 
((z) acquires an infinitely dominant singular contribution of the order of 8(t - T ) .  
However, the formula ( 7 . 7 )  is valid a t  t = T (although it no longer represents the 
Green’s function), and reveals that  

&+(zlZ) = 0 when t = T ,  (8.17) 

in which case (8.14) reduces to  

&+(Z,lZ) = & + ( Z i l z )  &+(Z,Iz). (8.18) 
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But, provided T, > T (v = 1 ,2 ,3 ) ,  (8.2) remains applicable at z = 2,. So, if (x, t )  
lies along t = T ,  then 

(8.19) 
The proof is now complete. 

5(%) = t(Z1) + 5G42). 

9. Asymptotic development 
The general solution (7.9) can be asymptotically approximated for either large 

1x1, or large t ,  by spatially restricting the current distribution J ( z )  to a time- 
independent, finite subdomain X of the infinite strip E, and leaving it switched 
on over only a finite time interval [0, 71: J ( z )  = 0 whenever t > 7, as well as 
outside 2 during 0 6 t 6 T .  Throughout X and its boundary 8 2 ,  we have 
x- < x 6 x+, x+ (x-) being the constant maximum (minimum) value of x over 8 2 .  
To approximate (7.9), we employ (7 .7)  and (7 .8) .  Thus, whenever t > r,  

6 (at/2V)cos(&ry) sgn[x-x--(U- V ) t ]  j:dTjj/(X, Y,T)cos(+;rrY) 

x exp{ - &+- X - (U - V )  (t - T)I}dXdY 

-sgn[x-x+-(U+ V ) t ]  d T / / = J ( X ,  Y, T )  cos(41~Y) 

valid for (see figures 4 and 5) 

x B x+ + ( U  + V ) t  (i.e. very far downstream of yl(x+, O ) ) ,  (9.2) 

yv(Xo,  To) (Y = 1 , 2 )  denoting the y p  characteristic through (X,,, To) with equation 
given by (8.4), as well as within any one of the following x, t zones. 

Case U > V 

x 4 x- + ( U  - V )  ( t  - 7) (i.e. very far upstream of y2(x-, 7)). (9.3) 

x 4 x- + (U  - 7) t (i.e. very far upstream of y2(x-, O ) ) ,  (9.4) 

and x + + ( u - V ) ( t - T )  <x<x-+(U+V)( t -T) .  (9.5) 

Case U < V 

At any finite instant, (9.2)-(9.4) describe appropriately large axial distances 
measured upstream and downstream from the domain 2, in which case, (9.1) is 
an estimate for large 1x1. In  particular, we see that [-+ 0 as 1x1 -+a. One implica- 
tion is that no disturbances are being created a t  infinity, a compliance (once 
again) with the radiation principle. Furthermore, at  any finite position, there 
eventually comes a time beyond which (9. I) holds (as a large-t approximation) ; 
this is implied by (9.3) for U > V ,  and by (9.6) for U < V .  In this event, t -+o  as 
t -f a, corresponding to an ultimate steady state of absolute ‘silence ’, attained 
after an infinite period starting from the instant r of switching-off. 
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t 

t 

f = T  

------------------- 
.Y . x +  

FIGURE 4. Case U > V .  The zones of asymptotic validity for (9.1) occur within the shaded 
(partially infinite) regions, sufficiently far, in accordance with (9.2) and (9.3), from yl(z+, 0) 
and y2(x- ,  T), the two extreme characteristics about t = T, and emanating from an x ,  t 
section of the distribution J ( z ) .  

i 

‘t 

FIGURE 6. Case U < V.  The shaded regions contain the zones defined by (9.2), (9.4) and 
(9.5). The approximation for large Iz] holds sufficiently far to the right and left of, respec- 
tively, yl(x+, 0 )  and y&-, 0), the relevant extreme characteristics. The same approxi- 
ma.tion (i.e. (9.1)), but for large t ,  holds sufficiently high above the two intersecting 
characteristics yl(z-, T) and y2(z+, 7 ) .  
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Appendix. The function F( V ; r I R) 

F( V ;  rlR). This is defined, throughout 0 < y < 1 and 0 c Y < 1, by 
The o integral reduction of (4.6) leads to a formula (4.13) involving the function 

sinh [a( I - y)] sinh [a( 1 - Y ) ]  
exp Cia(% - X))da ,  (A I) 27T sinh(2a)[(U+ V)a+h]  

in terms of a Cauchy principal value (PV), U, V and h being real. The only singu- 
larities of the integrand, extended into the complex a plane, are a simple pole at 

a = a1 E - A/ (  U + V )  along the given path ( - GO, GO) (A 2) 

(and hence the PV interpretation), together with an infinity of symmetric simple 
poles at  

(A 3) 

determined by the zeros of sinh(2a). Though this factor vanishes a t  a = 0,  the 
integrand concerned is actually analytic near and at a = 0, approaching zero as 
a+O. Note that, whenever y = I ,  F( V ;  rlR) = 0; so we need to develop (A I) 
only for 0 < y < 1. 

The above integral can be tackled by first continuing its path into the a plane. 
The usual appeal to Jordan’s lemma (associated with an integration along a large 
semicircle expanding to infinity) is not directly feasible here, because the neces- 
sary uniform convergence principle fails along the Im a axis owing to a blockage of 
this route by the distribution of singularities diverging both ways to + ico, - im. 
Por our purposes, then, we consider the related integral 

a = &wr, - i iwr (Y = 1,2,3, . . ., GO) along the Im a axis, 

sinh [a( 1 - y)] sinh [a( I - Y ) ]  
sinh (2a) (a - al) exp{ia(x-X)}rh (0 G y < I, o < Y < I ) ,  

(A 4) 

taken over the path 9, which does not pass through any of the poles given by 
(A2) or (A3). It can be proved that 

cosh [( 1 - y )  ]Real] cosh [( 1 - Y)I Real] 
sinh (2JReaJ)  

x exp{ - ( x - X )  Ima} ldal, (A 5) 

< 2minla-all 1 9 cothIRealexp{-(x-X)Ima}Ida[, (A 6) 
U € . Y  

with min la - all denoting the minimum (a perpendicular) distance of a, from 2’. 

Consider the vertical rectangular boundary of height 2N and width 2N*, formed 
from the straight paths Sl, Z2, . . . , Y8 (see figure 6). Sl is joined to ,Ea2, and 
z3 to z4, via semicircular indentations, each of radius 8 = sinh-l(& exp { - N i l ) ,  
centred respectively at iN, - iN. Suppose 

U € 9  

N t  > max { lall, In (2 sinh &r)-l}, (A 7) 
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FIGURE 6. The vertical, indented, rectangular boundary, whose upperllower half in 
Im tc 0, joined to  the indented real base ( -  iV*, NB), provides a closed contour for 
determining P( V ;  rlR) when 2 X .  There is no loss of generality in assuming h > 0, in 
which case the pole a, is on the negative half of the Re a axis. (If h < 0, a, is on the positive 
half of this axis, but leads to the same result.) 

and let N = 8(n + +) n, n being a positive integer. Now, (A 7) implies, in particular, 
E < an; i.e. each of the semicircular detours and its centre never coincide with 
any ofthe imaginary poles listed in (A 3). In  fact, the closed indented rectangular 
boundary completely surrounds 2n of these imaginary poles, viz. +ivn, - i i vn  
(Y = 1, .~., n), as well as the real pole a, (depicted as being negative, assuming 
h > 0). Furthermore, as N - t  co (through integral values of n), this closed boundary 
expands to infinity while both its indentations contract towards their centres. 
In  this limiting process, the advancing path hurdles intermittently across each 
remaining imaginary pole without ever making contact. All poles are thus 
eventually enclosed. Now both the integrands arising in (A5) and (A6) are 
largely dominated by the exponent exp { - (x - X) Im a]. Hence, if any of the 
segments 2,, (v = 1, ..., 8) were to replace 2, then for convergence of I when 
n-tco, we require that 

x X whenever Im a 5 0 on 9. (A 8) 
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For example, then, if 9 = TV (v = 1,2,3,4) ,  a horizontal segment, (A 6) yields 

(A 9) 

(Note that the integrand cothc is singular a t  6 = 0, but not at 5 = B ;  hence the 
reason for having the indentations about a = iN, -iN.) On the other hand, 
if 9 = L?,, (v = 5,6,7,8) ,  a vertical segment, then using (A5) instead, we get 

+ O  as N+co. (A lo )  < 2exp{-(y+ Y)N*} 
Ix - X i  (Nt - la,[) (1 - exp ( - 4N4)) 

Now, the integrand occurring in (A 4) is analytic at  a = f iN and on the semi- 
circular indentation: la iNI = E ,  along which its magnitude is therefore 
bounded above by Mj3 ( >  0 ) ,  say. Consequently, if 9 is replaced by this 
indentation path, 

III < N*?TE = M*n.sinh-l(iexp(-N*))+O as N-tm.  (A 11) 

To determine F (  V ;  rlR) from (A 1), we select, corresponding to x z  X and in 
accordance with (A 8), a closed contour comprising the upper/lower (i.e. Im a 0) 
half of the indented rectangular path of figure 6, completed by the real base 
( - N t ,  :a), which is indented about the pole a t  a = a1 by a semicircle protruding 
slightly into Im a z 0. This closed contour, thus constructed, is positively/nega- 
tively directed, and circumscribes the n imaginary poles a t  

a = k i i vn  (v = 1, ..., n),  

but excludes the real pole a,. We apply the residue theorem; let N+m, taking 
into account the results (A9)-(A 11); and, consistent with a PV, squeeze in, to 
the point of vanishing, each indentation about a,. Whereupon, we arrive at  

if x > X: (A 12) 

butif x < X :  PV ( )=-mires idue( ) -2niX residue(), (A 13) 

m 00 

P V S  ( ) = .ni residue ( ) + 2ni 2 residue ( ), 

/Irn a1 v = l  -givn 

--m a, u = l  @V7I 

m 

where ( ) represents the integrand of (A4).  Application to (A I) leads to 

sinh [al( 1 - y)] sinh [a,( 1 - Y ) ]  exp {ia,(x - X ) )  
2 ( U +  V)sinh(2a,) 

F(V;rlR) = isgn(x-X) 

( -  1)nsin [inn( 1 - y)]sin [inn( 1 - Y)]exp{ - Qnn Ix-Xl )  
2h +inn( U + V )  - i H ( x - X )  CI 

)2= 1 

m ( - i ) n  sin [inn( 1 - y)] sin [inn( 1 - Y)] exp { - inn 1% - X I }  

(A 14) 
2h - inn( U + V )  + i H ( X - x )  X 

n=l 
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The occurrence of the signum function sgn (x - X) and both Heaviside functions 
apparently suggests a singular behaviour, viz. a discontinuity about x = X ,  
following the sign disparity of the forms (A 12) and (A 13). From these, we 
observe that 

[ a, n+m v = l  hivn - i i v n  1 X = X  

n 
= 27ri residue ( ) + lim C residue ( ) +residue ( ) 

= lim ( )z=x (via residue theory), 
N+m f 

provided ( )z=x, which is performed over the closed indented rectangular 

boundary of figure 6 (but described, instead, in a fully positive sense), exists in 
the limit as AT -+ 00. When z = X, the results of (A 9) as well as (A 11) remain valid. 
However, instead of the second inequality in (A lo), we have 

4 

2N+ exp { - (y + Y )  N+}  
I I Iz=X < (1 - la,l/N+) ( 1  -exp { - 4N4))' 

which therefore still + 0 as N-+ co. Consequently, 

lim 4 ( l z z x  = 0, 
N-+m 

so that, contrary to expectation, the integral PV 

x = X. Hence, 

So P( V ;  rlR) is definitely continuous throughout -GO < x < 00. Both (A 14) and 
(A 15) are valid over 0 < y < 1 and 0 < Y < 1. (The expression (4.13) also 
includes the function 1p( - V ;  r I R). Regarding its integral representation, the 
integrand has a single real pole at  A/(  V -  27) which, if h > 0, lies along the 
positivelnegative half of the Rea axis (the path of integration), depending on 
U 2 V .  The final form for H( - V ;  rlR), however, is obtainable from (A 14) by 
merely substituting - V for V ,  irrespective of U 2 V.) 

The above results fail when J' = - U .  In  this case, (A 1) reveals that the real 
pole a = a, is missing, and so the PV interpretation is no longer needed. Other- 
wise, a similar contour integration technique is applicable and eventually leads to 

( ) is continuous across 
S y m  

F ( V ;  rlR)I.=x+o+ = JYv; rlR)Iz=x+o-. (A 15) 

sgn(x-X) O' 

2ih n=l 
C ( - 1)" sin [inn( 1 - y)] sin [inn( 1 - Y ) ]  F (  - U ;  rlR) = 

xexp(-&urIx-Xl}. (A 16) 

From a series formula of Gradshteyn & Ryzhik (1965,1.462), it can be shown that 

(-1)n - sin (212x1 sin (2ny)  exp { - 2nltl) = sinh2 t + cos2 (x + y) [ sinh2 t + cos2 (x - y) n=l  
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Taking its t derivative, then applying this to (A 16), we obtain the closed form 

J'( - U ;  rlR) 

- i(lBh)-lsinh [&n(x -X)]  cos (gny) cos(gnY) 
{sinh2 [tn(x  - X)] + sin2 [ t n ( y  -I- Y)]}{sinh2 [in@ - X)] + cos2 [&r(y - Y)]}' 

(A 18) 

This demonstrates categorically that, when 0 < Y < 1 and 1x1 < 00, F( - U ;  rJ R) 
is an analytic function of x and y throughout the (real) infinite strip 

- 

0 < y < 1 :  1x1 < 00. 

We next consider (4.4). This is reducible via (4.11) to 

O0 sinh [a( 1 - y)] sinh (u Y) 
u sinh a exp(ia(x-X))da. (A 19) K(r, t(R) = W )  

In  the a plane, theintegrand is actually analytic a t  01 = 0 (in spite of a double zero 
at a = 0 possessed by its denominator), but has an infinity of purely imaginary 
simple poles a t  a = ivn, - ivn (v = 1,2,  ...,a). Provided the condition Y 6 y 
but r $: R holds, the infinite integral involved is convergent and can again be 
tackled by a contour integration to yield 

K(r, t IR) = H(t)n-l exp {iht} 

This series can be summed by employing (A 17). Thus, 

m 

+sin (nny) sin ( n m  Y )  exp { - nnlx - XI}.  (A 20) 
n = l  

sinh2 [+n(x - X)] + sin2 [+n(y + Y ) ]  
sinh2 [+n(x - X)] + sin2 [+n(y - Y ) ]  

K(r, tlR) = H(t )  (4n)-1exp{iht}1n 

which, for 0 < Y < 1 and 1x1 < co, is influenced by a singular effect of 
O(1n Ir - R12) near the point r = R, but stays analytic elsewhere inside 

0 <zJ < 1:121 <co. 
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